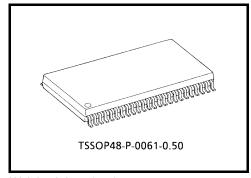
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74LCX16373FT

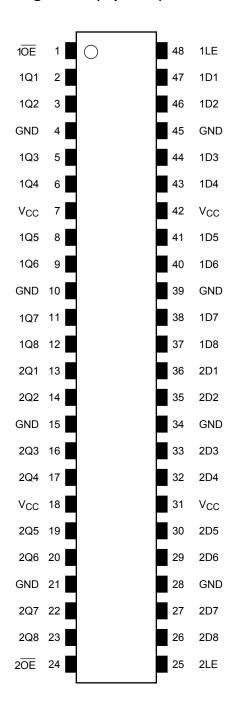

Low-Voltage 16-Bit D-Type Latch with 5-V Tolerant Inputs and Outputs

The TC74LCX16373FT is a high-performance CMOS 16-bit D-type latch. Designed for use in 2.5-V or 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

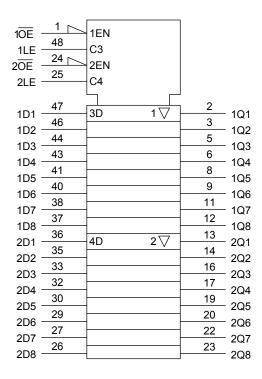
The device is designed for low-voltage (2.5-V or 3.3-V) VCC applications, but it could be used to interface to 5-V supply environment for both inputs and outputs.

This 16-bit D-type latch is controlled by a latch enable input (LE) and an output enable input (\overline{OE}) which are common to each byte. It can be used as two 8-bit latches or one 16-bit latch. When the \overline{OE} input is high, the outputs are in a high-impedance state.

All inputs are equipped with protection circuits against static discharge.



Weight: 0.25 g (typ.)


Features

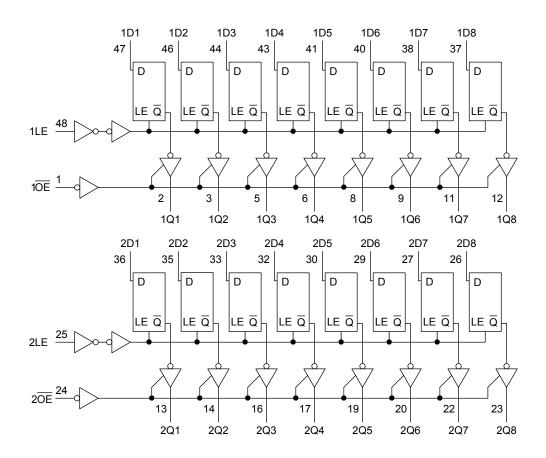
- Low-voltage operation: V_{CC} = 2.0 to 3.6 V
- High-speed operation: $t_{pd} = 5.4 \text{ ns (max) (V}_{CC} = 3.0 \text{ to } 3.6 \text{ V)}$
- Ouput current: $|I_{OH}|/I_{OL} = 24 \text{ mA (min)} (V_{CC} = 3.0 \text{ V})$
- Latch-up performance: ±500 mA
- · Package: TSSOP (thin shrink small outline package)
- Power-down protection provided on all inputs and outputs

Pin Assignment (top view)

IEC Logic Symbol

Truth Table

	Outputs		
1OE	1LE	1D1-1D8	1Q1-1Q8
Н	Х	Х	Z
L	L	Х	Qn
L	Н	L	L
L	Н	Н	Н


	Outputs		
2OE	2LE	2D1-2D8	2Q1-2Q8
Н	X	Х	Z
L	L	Х	Qn
L	Н	L	L
L	Н	Н	Н

X: Don't care

Z: High impedance

Qn: Q outputs are latched at the time when the LE input is taken to a low logic level

System Diagram

3

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V_{CC}	-0.5 to 6.0	V
Input voltage	V _{IN}	-0.5 to 7.0	٧
Output voltage	Vour	-0.5 to 7.0 (Note 2)	V
Output voitage	V _{OUT}	-0.5 to V _{CC} + 0.5 (Note 3)	
Input diode current	I _{IK}	-50	mA
Output diode current	I _{OK}	±50 (Note 4)	mA
DC output current	lout	±50	mA
Power dissipation	P _D	400	mW
DC V _{CC} /ground current per supply pin	I _{CC} /I _{GND}	±100	mA
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Note 2: Output in OFF state

Note 3: High or low state. IOUT absolute maximum rating must be observed.

Note 4: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Recommended Operating Conditions (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	2.0 to 3.6	V	
Tower supply voltage	vcc	1.5 to 3.6 (Note 2)	V	
Input voltage	V _{IN}	0 to 5.5	V	
Output voltage	Vour	0 to 5.5 (Note 3)	V	
Output voltage	V _{OUT}	0 to V _{CC} (Note 4)	V	
		±24 (Note 5)		
Output current	I _{OH} /I _{OL}	±12 (Note 6)	mA	
		±8 (Note 7)		
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 8)	ns/V	

Note 1: The recommended operating conditions are required to ensure the normal operation of the device.

Unused inputs must be tied to either VCC or GND.

4

Note 2: Data retention only

Note 3: Output in OFF state

Note 4: High or low state

Note 5: $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$

Note 6: $V_{CC} = 2.7 \text{ to } 3.0 \text{ V}$

Note 7: $V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$

Note 8: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

Electrical Characteristics

DC Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Characteristics		Symbol	Test Co	Test Condition		Min		Unit	
Ondracterist	103	Cymbol	rest condition		V _{CC} (V)	IVIIII	Max	Onic	
	H-level	V	Ver		2.3 to 2.7	1.7	1.7 —		
Input voltage	i i-level	V _{IH}		_	2.7 to 3.6	2.0		V	
iliput voltage	L-level	\/			2.3 to 2.7	_	0.7	V	
	L-ievei	V _{IL}	_	_	2.7 to 3.6	_	0.8		
				$I_{OH} = -100 \mu A$	2.3 to 3.6	V _{CC} - 0.2			
				$I_{OH} = -8 \text{ mA}$	2.3	1.8			
	H-level	V _{OH}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -12 \text{ mA}$	2.7	2.2			
				$I_{OH} = -18 \text{ n}$	$I_{OH} = -18 \text{ mA}$	3.0	2.4		
Output voltage				$I_{OH} = -24 \text{ mA}$	3.0	2.2		V	
			$I_{OL} = 100 \mu A$	$I_{OL} = 100 \ \mu A$	2.3 to 3.6	_	0.2		
					$I_{OL} = 8 \text{ mA}$	2.3	_	0.6	
	L-level	V _{OL}			$I_{OL} = 12 \text{ mA}$	2.7	_	0.4	
				$I_{OL} = 16 \text{ mA}$	3.0	_	0.4		
				$I_{OL} = 24 \text{ mA}$	3.0	_	0.55		
Input leakage current		I _{IN}	V _{IN} = 0 to 5.5 V		2.3 to 3.6	_	±5.0	μΑ	
3 state output OEE sta	tate output OFF state current		$V_{IN} = V_{IH}$ or V_{IL}	2.3 to 3.6	_	±5.0	μА		
3-State output OFF State current		loz	V _{OUT} = 0 to 5.5 V		2.3 to 3.0		±3.0	μΑ	
Power-off leakage curi	rent	loff	$V_{IN}/V_{OUT} = 5.5 \text{ V}$		0	_	10.0	μΑ	
Quiescent supply curre	Quiescent supply current		$V_{IN} = V_{CC}$ or GND		2.3 to 3.6		20.0		
Quioscont supply cult			$V_{IN}/V_{OUT} = 3.6 \text{ to } 5.5 ^{\circ}$	V	2.3 to 3.6	_	±20.0	μА	
Increase in Icc per inp	ut	Δlcc	$V_{IH} = V_{CC} - 0.6 V$		2.3 to 3.6	_	500		

AC Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Characteristics	Symbol	ymbol Test Condition				Max	Unit
Characteristics	Symbol	rest Condition	V _{CC} (V)	CL(pF)	Min	IVIAX	Offic
Dropogation delay time	.		2.5 ± 0.2	30	1.5	6.5	
Propagation delay time (D-Q)	t _{pLH}	Figure 1, Figure 2	2.7	50	1.5	5.9	ns
(D-Q)	t _{pHL}		3.3 ± 0.3	50	1.5	5.4	
Desperation delevitime	_		2.5 ± 0.2	30	1.5	6.6	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	2.7	50	1.5	6.4	ns
(LE-Q)	t _{pHL}		3.3 ± 0.3	50	1.5	5.5	
			2.5 ± 0.2	30	1.5	7.9	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	2.7	50	1.5	6.5	ns
	t _{pZH}		3.3 ± 0.3	50	1.5	6.1	
		Figure 1, Figure 3	2.5 ± 0.2	30	1.5	7.2	ns
3-state output disable time	t _{pLZ}		2.7	50	1.5	6.3	
	t _{pHZ}		3.3 ± 0.3	50	1.5	6.0	
NATIONAL CONTRACTOR AND ADMINISTRACTOR ADMINISTRACTOR AND ADMINISTRACTOR AND ADMINISTRACTOR AD			2.5 ± 0.2	30	3.5	_	
Minimum pulse width	t _w (H)	Figure 1, Figure 2	2.7	50	3.0	_	ns
(LE)			3.3 ± 0.3	50	3.0	_	
			2.5 ± 0.2	30	3.0	_	
Minimum setup time	ts	Figure 1, Figure 2	2.7	50	2.5	_	ns
			3.3 ± 0.3	50	2.5	_	
			2.5 ± 0.2	30	2.0	_	
Minimum hold time	t _h	Figure 1, Figure 2	2.7	50	1.5	_	ns
			3.3 ± 0.3	50	1.5	_	
			2.5 ± 0.2	30	_	_	
Output to output skew	t _{osLH}	(Note)	2.7	50	_	_	ns
	t _{osHL}		3.3 ± 0.3	50	_	1.0	

Note: Parameter guaranteed by design.

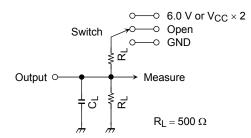
 $(t_{OSLH} = |t_{DLHm} - t_{DLHn}|, t_{OSHL} = |t_{DHLm} - t_{DHLn}|)$

Dynamic Switching Characteristics

(Ta = 25°C, input: $t_r = t_f = 2.5$ ns, $R_L = 500 \Omega$)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Quiet output maximum	V _{OLP}	V _{IH} = 2.5 V, V _{IL} = 0 V, C _L =30pF	2.5	0.6	V
dynamic V _{OL}	VOLP	$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}, C_L = 50 \text{pF}$	3.3	0.8	V
Quiet output minimum	V _{OL} V	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}, C_L = 30 \text{pF}$	2.5	0.6	V
dynamic V _{OL}	IVOLVI	V _{IH} = 3.3 V, V _{IL} = 0 V, C _L =50pF	3.3	8.0	V

Capacitive Characteristics (Ta = 25°C)


Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Input capacitance	C _{IN}	_	3.3	7	pF
Output capacitance	C _{OUT}	_	3.3	8	pF
Power dissipation capacitance	C _{PD}	$f_{IN} = 10 \text{ MHz}$ (No	e) 3.3	25	pF

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/16 \text{ (per bit)}$

AC Test Circuit

Parameter	Switch		
t _{pLH} , t _{pHL}	Open		
t _{pLZ} , t _{pZL}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
t _{pHZ} , t _{pZH}	GND		

Figure 1

AC Waveform

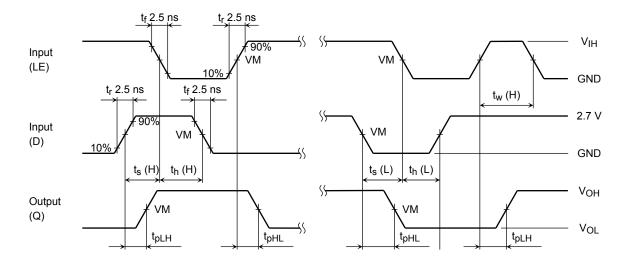
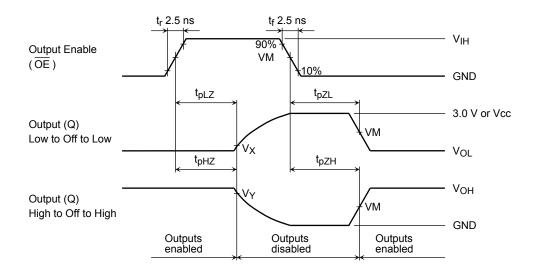
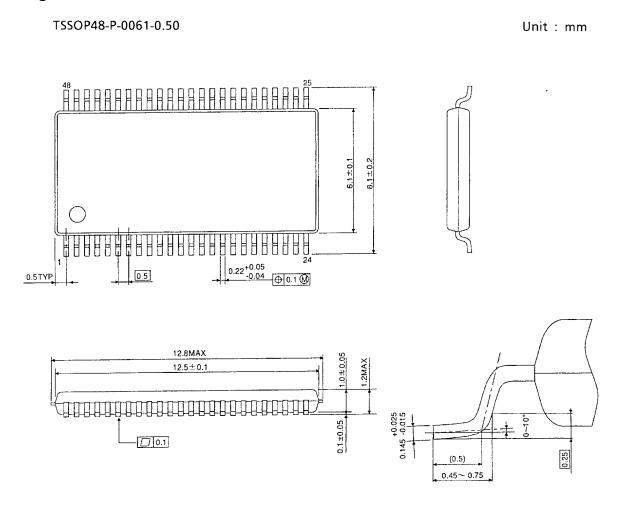


Figure 2 $t_{pLH}, t_{pHL}, t_w, t_s, t_h$




Figure 3 t_{pLZ} , t_{pHZ} , t_{pZL} , t_{pZH}

Symbol	V _{CC}					
Symbol	$3.3\pm0.3~\textrm{V}$	2.7 V	$2.5\pm0.2\;\textrm{V}$			
V_{IH}	2.7 V	2.7 V	V _{CC}			
V _M	1.5 V	1.5 V	V _{CC} /2			
VX	V _{OL} + 0.3 V	V _{OL} + 0.3 V	V _{OL} + 0.15 V			
VY	V _{OH} – 0.3 V	V _{OH} – 0.3 V	V _{OH} – 0.15 V			

8

2006-02-01

Package Dimensions

9

Weight: 0.25 g (typ.)

Note: Lead (Pb)-Free Packages

TSSOP48-P-0061-0.50

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.